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ABSTRACT

Computer Integrated Manufacturing (CIM) seeks to integrate computers into the
manufacturing environment, with the end-result being a more efficient and productive
factory. Current approaches to CIM generally fail to truly integrate the various
manufacturing functions (design, scheduling, planning, manufacture, business, etc.) and
instead result in self-sufficient, computer-served islands of automation. In these systems,

data must be translated before it moves from one manufacturing function to another.

Wu and Madison have approached data modeling in a CIM environment from a new
perspective. Their approach seeks to provide one data model that meets the needs of all

manufacturing functions within a factory, negating the need for human or machine data

translators.

In this thesis, we review the work done by Wu and Madison and apply their data

model to a particular manufacturing function, the Flexible Manufacturing System (FMS).
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I. INTRODUCTION

A. OVERVIEW

As the computer moved from the laboratory of the scientist into the office of the
engineer and, finally, into the factory, manufacturers had high expectations. A rew
technology, which came to be known as Computer Integrated Manufacturing (CIM), held
great promise in terms of cutting costs, increasing efficiency, and raising profits. It
appeared to be a simple problem on the surface, integrating computers into the factory.
Once installed, computers, the purported "cure-all” for industry, would solve all the
problems associated with design, production, scheduling, and analysis and forecasting of
market conditions. What held great promise a decade ago, though, still has yet to be
fully implemented in the factory. This thesis examines why this is so, offers a potential
solution, and implements the proposed solution in a Flexible Manufacturing System

(FMS) environment.

B. HISTORICAL BACKGROUND

Within the last fifteen years, the manufacturing industry has undergone major
changes in an effort to keep pace with an ever-changing marketplace. What had been a
personal relationship between designer and machinist rapidly evolved into a complex
process utilizing specially-trained personnel, sophisticated data and communications
handling equipment, and advanced machine tools [Ref. 1]. This evolution naturally led
to a fragmentation of the design and production processes as the need for specialized
people to handle specialized tasks became apparent. With this fragmentation, in tum,
was lost much of the gain in efficienc / and productivity which specialization brought.

Fragmentation meant increased overhead as more people and more equipment were
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required to manage and control the necessary systems to move information and materials.
Computers were introduced in small pans of companies to assist in this management and
control function, further fragmenting the whole process. The end result was highly-
specialized “cells” within a company composed of people and machines tasked to
perform one or a small number of missions. Few, if any, people had an understanding of

the entire manufacturing process from design to finished product.

Overall, the improvements in efficiency and productivity were not as great as had
been expected due, in large part, to the approach to the problem. Rather than viewing the
application of automation and computers in terms of the overall manufacturing process, a
very narrow approach was used, applying automation only to the individual phases of the

overall process.

Computers were also introduced into other facets of manufacturing. Dynamically
programmable machines, first numerical control (NC) machines using paper-tapes, and
later, computer numerical control (CNC) machines, streamlined the various
manufacturing processes. Data management systems replaced manual inventory control
and accounting systems, hus increasing the ability of management to control the
growing business. Computer Aided Design (CAD), the process of computer-assisting the
human engineer to convert his ideas and knowledge into mathematical and graphical
models, greatly expedited the design process. The net effect of this automation effort
was a significant increase in productivity, efficiency, cost savings, quality; all factors
vital to the flourishing of an enterprise. Unfortunately, this effort carried with it the

unwanted side effect of an uncontrolled, fragmented management information system.

As the factory and the front-office were automated, the need for interoperability was
often ignored, resulting in the inability to communicate or exchange data among the

various entities within the business. Design could not pass information to




Manufacturing, Manufacturing received orders manually from Customer Service, and
Shipping hand-carried invoices to Customer Service; incompatability and fragmentation
were rampant. Each department was automated and internally efficient, yet extemnal
interactions were slow and inefficient. The need to integrate these islands of automation;
isolated activities within the larger enterprise, each employing incompatible automation

techniques, became apparent.

C. THE NEED FOR COMPUTER INTEGRATED MANUFACTURING

Initially. it was the manufacturing people, the mechanical and industrial engineers,
who expressed the need to make these diverse computer systems communicate with each
other. They foresaw a system which allowed, for instance, design data for a product from
a Computer-Aided Design (CAD) system to be used directly by a Computer-Aided
Manufacturing (CAM) system for process planning. The first approach to providing
integrated, computer-supported manufacturing was the development of a translator, or
interface, to convert data from the format used by one computer into another format
required by a different computer. The advantage of this approach is that it does not
require any modifications to existing systems, however, it really does not integrate the
various phases of the overall process, it merely connects them. Additionally, it
introduces the problem of software maintenance; as any component in the system is
modified. the translator must be rewritten or modified. This approach has proven
effective as a short-term solution, but does not provide the answer to the need for true

integration [Ref. 2].

A second approach has been developed by the Society of Manufacturing Engineers
(SME), the CIM Enterprise Wheel. This approach features a centralized data
management system and, on the surface, appears to meet the need for a method of

providing data across the entire spectrum of manufacturing phases. However,
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implementation is difficult with current database management systems. According to
some within the database community, the relational database management system is not
able to handle the complexities of the manufacturing environment2 . It is the opinion of
these people that ecither an improved relational system must be developed, or a

b completely new approach to serving data be investigated.

This new approach involves looking at the centralized data serve: not as a physical

entity but as a logical one; actually a common data model meeting the needs of all phases
of the manufacturing process. This approach, with one major modification, is the one
which shows the greatest potential for truly integrating all aspects of manufacturing. If
true integration is the goal, then it is the model derived from this approach which holds
great promise for achieving that goal. We intend to attack the problem of true

integration, in the context of FMS, in this thesis.

This thesis is organized as follows: Chapter 2 provides several definitions of CIM,
as well as a review of several data models currently used to support CIM and the
shortcomings of these models; Chapter 3 reviews the an innovative data-oriented
approach to CIM, a method which looks at the problem of integration from a data-
oriented perspective rather than the traditional process-oriented point of view; Chapter 4
describes FMS; and in Chapter 5, we apply the Manufacturing Data Model to a FMS
application and make observations regarding the fitness of this model for accomplishing

the integration in CIM.
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. CURRENT APPROACHES TO CIM

A. INTRODUCTION

In this chapter, we introduce a number of definitions of Computer Integrated
Manufacturing (CIM), discuss three current approaches to CIM, describe the data models
used to support these approaches and the modeling abstractions which apply, and

conclude with a discussion of the shortcomings of these approaches.

-

B. COMPUTER INTEGRATED MANUFACTURING DEFINED
There are almost as many definitions of CIM as there are papers and texts on the
subject. The following definitions cover the spectrum of what is generally regarded as
CIM:
* CIM is a series of interrelated activities and operations involving the design,
material selection, planning, production, quality assurance, management, and

marketing of discrete consumer and durable goods [Ref. 3];

* CIM is a network of computer systems integrating the various manufacturing
processes [Ref. 1];

* CIM is the deliberate integration of autoinated systems intc processes resulting in
the production of a product {Ref. 1];

* CIM is the logical organization of individual engineering, production, and
marketing/support functions into a computer integrated system [Ref. 1];

* CIM is the phased implementation of automated and non-automated systems to
support the manufacturing environment [Ref. 1];

* CIM is an information structure providing a flow of data needed by the various
functions in the manufacturing process [Ref. 1];

* CIM is a strategy, incorporating computers, to link existing technology and people
to optimize business activity [Ref. 4].

While some definitions summarize the objectives and meaning of CIM better than others,

all support the overall goal of CIM - to complete production of an end-item in the




simplest and most timely fashion, with a minimum of human interventior, with a
minimum of interruptions in the flow of all required processes and at minimum cost.
Implementation of CIM should mean real-time shared access to all data by those people
and processes requiring access, as well as better quality products, shorter response time
to design changes, shorter design and production times, and more efficient processing of

small orders [Ref. 1].

C. THE PROCESS OF INTEGRATION

Traditional processes performed within a factory include design, process planning,
Numerical Control (NC) machine programming, robot programming, quality control,
testing, shop floor management, marketing, sales estimating, order processing,
scheduling, material requirements planning, plant maintenance, shipping, inventory
management, purchasing and accounting [Ref. 1]. These processes, in tumn, have been
grouped to form manufacturing functions, such as Computer Aided Design (CAD),
Computer Aided Manufacturing (CAM), Computer Aided Process Planning (CAPP),
Computer Aided Test (CAT), Group Technology (GT), and Flexible Manufacturing
Systems (FMS). These functions are not always grouped consistently; for example, in
one case robot programming might be considered a process in CAM, while in another
case it may be included as part of CAPP. This ambiguity ("Which processes constitute
which manufacturing functions?") is a significant problem faced by systems designers

seeking to integrate computers into the factory and is an area in need of standardization.

D. CURRENT APPROACHES TO INTEGRATION

There are three approaches which are currently applied to integrating manufacturing
functions. Each approach requires a data model or models to pass information between
the processes and functions and each of these models are supported by one or more

modeling abstractions. A discussion of these approaches follows.
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1. The High Level Approach

The high level approach to integration secks to utilize as much of the existing
manufacturing machinery and automation equipment as possible, thereby holding down
the investment in dollars and minimizing time required for total integration. This
approach is commonly used to provide interfaces for the four main components of CIM,
as shown in Figure 1 [Ref.1]. The typical method of implementing the high level
approach is through a translator, a software system which takes output data from one

process and converts it into a form which can be used as an input to another process.

This approach has several drawbacks: when the data format used in one
process is modified, the translator must be rewritten, translation is costly in terms of
execution time and data which is passed from one process to another and then back again
requires two translations. In general, the high level approach does not solve the
integration problem but instead provides a "work-around.” For these reasons, the high
level approach should be considered a short-term solution.

2. The Centralized Database Approach

The second approach to integration involves interfacing the four main
components of CIM through a centralized database, as shown in Figure 2. This
approach, while desirable from the standpoint of query processing and database
maintenance, is extremely difficult to implement. It requires a database management
system which can support the multitude of functions requiring data as well as assign
priorities to multiple requests for real-time access. The difficulty in implementing a
database management system which can provide these functions makes the centralized

database approach a long-term solution to integration.
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Manufacturing
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Figure 1. High Level Integration
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3. The Low Level Approach

The third approach to integration breaks the overall manufacturing process
down into manufacturing functions, such as those discussed in section C above. These in
turn, are served by individual databases. Interfaces would be provided between
databases and manufacturing functions, enabling one function to use data from another in

| a network-like arrangement. Such an interface would require that all the function
databases use a common language and data model. Finding such a language and data
r model, both of which must be powerful and flexible enough to support the variety of
abstraction principles utilized in each of the manufacturing functions, is 2 major obstacle

to this approach [Ref. 1].

One advantage of this approach is that the use of a uniform model and
language would force standardization among CIM system manufacturers, bringing with it
¢ several advantages such as ease of maintenance and upgrade and a yardstick to judge

competing systems. The low level approach also has the advantages of all distributed

database systems: they are reliable, available and fast. But with these advantages come
some disadvantages. Distributed databases are expensive to develop, prone to delay-
causing bugs and have inherent processing overhead [Ref. 5]. An additional advantage
of the low level approach is the more manageable data volume associated with any one
database. Consider the centralized approach, with its huge database; maintenance and
modification become a major undertaking. The low level approach, again, is considered
a long-term solution, requiring careful planning and integration.

4. Selection of an Approach

Past research has demonstrated that, while each of the three approaches has the
potential for application, only the high and low level approaches exhibit the
characteristics considered necessary to truly integrate manufacturing functions. The

centralized database approach would require a computer capable of monitoring the entire

10




manufacturing process as well as maintaining the database, including both static data
(setpoints, alarms, unit conversions, etc.) and dynamic data (dimensions, locations,
current system values and states, etc.), controlling operator access, and a multitude of
other functions [Ref. 6]. This extensive list of responsibilities would overwhelm all but
the most capable and expensive of those computers currently available. Other problems
exist with this approach. There is the possibility of a single-point failure causing a total
system shutdown, if the single-point happens to be the host computer. The solution to
this potential problem is the purchase, at some large sum, of a backup computer.
Additionally, the massive size of the database, in terms of data communications
requirements, storage, and manipulation, exceed the capabilities of today’s database
management systems and would tax a modemn mainframe computer. This is simply not a

viable approach.

The two remaining approaches, high and low level integration are both viable.
Both have been developed to some extent. However, the low level approach shows the
most promise for solving the problems facing the designer of truly integrated

manufacturing systems. In this approach, the data model serves a critical function.

E. THE DATA MODEL

As discussed above, the low level approach to integration uses distributed databases,
one for each manufacturing function, to support the CIM concept. These databases must
be linked by a common data model and a uniform language, each powerful enough to
support the different semantics inherent in the various manufacturing functions. The idea
of a powerful, flexible language is well understood and documented and we do not intend
to develop that concept in this thesis. The question of a data model remains - is there a
single model which could handle the diverse data needs of all the manufacturing

functions? We will examine current technigues in data modeling in support of CIM.
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The data model is the group of general rules for the specification of the structure of
the data, along with the operations allowed on the data. In other words, a data model is
an abstraction, or group of abstractions, which allows us to see the forest (information
content of the data) rather than the trees (individual values of data) [Ref. 7]. To better

understand the concept of data modeling, it is useful to define the objects to be modeled.

A working definition of an atomic piece of data might be the following tuple:
<object name, object property, property value, time>.

This is a reasonable way to view an idea; the tuple represents an object (object name) and
an aspect of the object (object property) which is instantiated by a specific value
(property value) at a particular time (time) [Ref. 8]. Time is typically a very
cumbersome aspect of data modeling, not necessarily appropriate, and often difficult to
encode. As a result, time will not be considered in this thesis. The definition of an
elementary datum reduces to <object name, object property, property value>. Several
data modeling methods have been developed to represent and relate these three
remaining elements of the datum. One typical method is to put data into categories
according to properties [Ref. 9]. In this method, the names of the categories, together
with their properties, is known as a schema. The schema can also include relationship
data between the categories and their properties. Figure 3 is an example of a schema
with three categories, US Government, Commanding Officer and USS LaJolla. The
categories are represented by ovals, the properties by rectangles, and the relationships are

shown as lines connecting the categories they relate to.

The data structure used to represent the categories, combined with the set of
allowable operations on those data structures, defines a particular data model. The

number of possible combinations of structures and operations would indicate that a

12




works for

US Government Commanding Officer

branch of pay

. ] rank name
service office

commands

USS LaJolia

hult homeport operating
number P schedule

Figure 3. Example of Database Schema

significant number of data models could be specified; however, in reality only a limited
number of models have practical uses. Of these, three, the hierarchical, network, and
relational models, are widely used and accepted. These models, also known as classical
data models [Ref. 10], will be discussed in the following paragraphs.
1. Classical Data Models
a. Hierarchical

The hierarchical data model, the oldest of the traditional data models, is a
direct extension of the hierarchical database concept. The hierarchical data model
represents objects and properties as nodes in a tree, with the relative order of trees and
subtrees important in defining the relationship between nodes. The arcs connecting the

nodes point away from the root and toward the leaves of the tree. Figure 4 shows an

13




intension of a hterarchical database for a submarine. The database is depicted in terms of

its nodes, or segmenr rypes, and the relationships between them.

In Figure 4, submarine, ship’s attributes and crew’s attributes represent
segments, with the segments further broken down into one or more data items or fields.
The relationships in a hierarchical data model are called parent-child relationships. and
can be one-to-one or one-to-many [Ref. 7). In Figure 4, the relationship between
submarine and crew’s attributes is one-to-one, that is, the submarine has one set of
crew’s attributes. This relationship is represented by a single arrow pointing at crew’s
attributes. Conversely, several sets of ship’s attributes could be applied to the node,

submarine, depending on the class. This one-to-many relationship is represented by

.. ]
SUBMARINE
null
number name homeport
SHIP'S ATTRIBUTES CREW'S ATTRIBUTES
combat [Jpropulsion supply number numoer
@ . .
svstem plant loadout officaers | enlisted

Figure 4. Intension of a Hierarchical Database
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double arrows pointing at ship’s attributes. In this example, submarine is the parent of
both ship’s attributes and crew’s attributes: ship’s attributes and crew’s attributes

are siblings

Figure 5 depicts a record, an extension of the structure shown in Figure 4.
An extension of a segment is a group of data items relating to one particular

entity [Ref. 6}.

The hierarchical data model. while appealing because of its simplicity. has
two inherent constraints: all relationships must be binary, either one-to-one or one-to-
many, and all relationships must be capable of representation in a tree-like
depiction [Ref. 7]. The constraint that all relationships be binary means that this model

can only represent one-to-one and one-to-many relationships. It is not possible to

SSN 682 Tunny Pearl Harbor

MK 117 Ssw

90 days ] |Reiche|

Figure 5. Extension of a Hierarchical Database

\d
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represent many-to-many relationships directly; instead, one of two antificialities must be
introduced. Figure 6 shows one method, known as duplication. In this method,
duplication of job number records are used to indicate that many ships are repaired by

many shipvards.

The second technique requires the introduction of second tree, as shown in
Figure 7. Here again, ship has a many-to-many relationship with shipyard. Both of

these methods, by retaining superfluous records, the potential for data duplication.

The second inherent constraint of hierarchical models is the requirement
that all data relationships be represented by a tree structure. As long as the data are
naturally hierarchical, this constraint does not present a problem. However, many-to-

many and multiple parent (many-to-one) relationships require modification to the graph

1 shio pertn | customer [ snoo | buiicing]  shipyard
4

y
[ jo0 number | job number | 100 numpoer |  job number

| snoo | buiding] shipyard | shio perth |  customer

Figure 6. Many-to-Many Relationship Represented by Duplication
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ship lshipyard

artificial artificral
segmaent segment

Figure 7. Many-to-Many Relationship Represented by Artificial Segment

structure. As a result, these types of relationships are not capable of being represented by
hierarchical data models. and are not capable of being represented by hierarchical data
models.
b. Network

Network data models are based on tables and graphs. The most prominent
network data model to. date is the model developed by the Data Base Task Group of the
Conference on Data Base Systems Languages, known as the CODASYL
model [Ref. 11]. In this model, the nodes of the graph represent record rypes which
correspond to groups of related fields. The lines between nodes correspond to setr npes
which represent the connections between tables. Each conuection, or ser, has a
designated owner record type and may contain zero or more member record types.

Figure 8 shows an example of a network data model.
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SHIP PARTS RECORDS
}
ship name hull number NSN part name locker number
SHIP ~SPR PARTS CORDS - SPR
SPR
quantity

Figure 8. Example of a Network Database

In this example, there are three record types: ship, parts records and
SPR. The sets ship-SPR and parts records-SPR respectively, relate ship and parts
records to SPR. Each occurrence of ship-SPR consists of one record from ship (the
owner) and one record from SPR (the members). In a similar fashion, an occurrence of
parts records-SPR would consist of a single record from parts records (the owner) and

one record from SPR (the members).

One constraint of the network data model is that, as in the hierarchical
model. all relationships must be functional, one-to-one or one-to-many. Additionally,
network data models cannot be used to represent recursive relationships, ie., the situation

where both owner an¢ member record types are the same [Ref. 7).
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¢. Relational

The relational data model is significantly different from the hierarchical
and network data models, both in its basis and its approach. The model is based in
relational mathematics, a field centered around the concept that a relation can be defined
which expresses the correspondence between two sets. Its approach is more abstract than
the hierarchical or network models and, therefore, more natural in its representation of
data. With the hierarchical and network models, data is forced into an artificial construct,
either a hierarchy or a set. In most cases, these models tend to complicate the user’s
view of the data. The relational data model’s strongest point is that it simplifies, rather

than complicates the representation of data. [Ref. 6]

Without delving deeply into the mathematics of the relational model, we
will provide a brief overview of the concept involved. The model is based on the notion
of a relation, or expression relating two or more sets. A relation can be thought of as the
Cartesian product of the domains of the sets involved. In even simpler terms, a relation
is the tuple which results when you take the Cartesian product of the domains of those

sets.

Typically, relations are represented to the user as a two-dimensional table
where the column headings represent artributes and the rows represent the ruples. Figure
9 depicts a relation called SUBMARINE. This relation has four attributes, hull
number, name, Commanding Officer and homeport. The domain of the attributes are

character strings of length 3, 15, 15 and 15, respectively.

Tuples are identified by the values of their attributes. For example, 682,
TUNNY, Kaup, Pearl uniquely identifies the first tuple in Figure 9. Often, however, it
is not necessary to use all the attributes of a tuple to uniquely identify it. The attribute

San Diego does not uniquely identify a tuple (three tuples contain that attribute) but the
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SUBMARINE

nuil nam Commanaing homeport
number ° Officer P
682 TUNNY Kaup Pearl
701 LaJOLLA MacNill San Diego
707 PORTSMOUTH lhrig San Diego
713 HOUSTON Rogers San Diego
R

Figure 9. Example of Relation

pair of attributes, 707 and San Diego does uniquely identify a tuple. A combination of
attributes which uniquely identifies a tuple is called a candidare key. If a candidate key is

chosen 1o be used as the tuple identifier, it is referred to as the primary kev (Ref. 5].

Relational models exhibit data independence, a measure of a database
system'’s ability to allow for change in the database without necessitating change in the
database programs or application programs. The model achieves this by representing
data as relations and then manipulating the relationship between relations through
relational calculus or relational algebra [Ref. 5]. Additionally, the relational model
represents data logically rather than requiring it to fit into an unnatural construct as
hierarchical and network models do.

d. Shortcomings of Classical Data Models

The classical data models have some significant shortcomings, as documented

in [Ref. 12]. Two of these shortcomings are particularly applicable to the CIM
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environment [Ref. 6]. These two limitations are a lack of support for abstract data types
and limited semantic expressiveness. The more serious of these is the problem of limited
semantic expressiveness [Ref. 6). Simple data structures in the classical models often
cause loss of information and minimal support for modeling of application environment
semantics [Ref. 13]. These models cannot distinguish between the different types of
relationships between objects, in fact, the same data structures used to model attributes of
an object are used to model the type of the object and the relationships between objects.

The result is loss of data [Ref. 6).

The second problem, the lack of support for abstract data types, causes
complex objects from the application environment to be represented by record data
structures. This unnatural representation requires users to address and manipulate objects
from the application environment differently than they would be addressed and
manipulated in the data modeling environment. This directly counteracts the primary
purpose of data modeling. [Ref. 6]

2. Higher-level Data Models

a. Introduction
Considerable effort is currently being directed at higher-level data models
which provide greater flexibility and expressiveness than the three traditional models.
These models, also known as semantic data models, seek to achieve increased database
accessibility by end users. To achieve this objective, the semantic models embed the

semantics appropriate to the application [Ref. 6].

Semantic data models employ abstraction concepts, or ideas, to organize
the information they represent and hide detail thereby reduce complexity. The following

section discusses the most common abstraction concepts used in semantic data models.
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b.  Abstraction Concepts

(1) Generalization/Specialization.

or a set of types as one generic object [Ref. 7]. By generalizing, we can overlook many
of the individual differences between objects, emphasizing instead their similarities.
Figure 10 depicts a generalization hierarchy for a submarine crew. The arrows indicate
the direction of generalization. In this example, crew member is a generalization of

officer and enlisted. One advantage of generalization is that the idea of inheritance

Generalization views a set of tokens

crew member

officer

nuclear

non-nuclear

enlistad

trained trained
Operations Weapons Admin
Department Department Department
Sonar Torpedo Fire Control
Division Division Division

Figure 10. Generalization and Specialization
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applies, that is, the properties of the generalized type are also properties of those entities
further down in the hierarchy. For example, in Figure 10, all cf the properties of crew
member are inherited by enlisted (assigned to a submarine, submarine-trained, etc.),
propernties which are inherited further down by various classifications of enlisted.
Inheritance of certain properties can be disallowed while some properties can be

specified as applicable to only one type.

Specialization is the opposite of generalization [Ref. 7]. In Figure
10, nuclear trained is a specialization of enlisted. In specialization, inheritance does
not always apply. In our example, all Weapons Department personnel are non-nuclear
trained but it is not true that all non-nuclear trained personnel are in the Weapons
Department.

(2) Aggregation. Aggregation is the abstraction concept in which an
object is represenied by its constituent parts and the relationships between those
parts [Ref. 14]. This concept is useful because it makes visible both the structure of an
object and the individual components of the object and how they relate to the structure of
the object and to each other [Ref. 7]. Built into this abstraction concept is the ability to
hide from the user those details of implementation which he does not need to know.
Aggregated properties which are definitional in nature are called intensional
properties [Ref. 15]. The values that these intensional properties can take on are referred
to as extensional properties [Ref. 15). Extensional properties are factual. Figure 11
depicts an aggregation hierarchy. Primitive objects, objects which can not be further
subdivided, are displayed in lower case. Aggregated objects are shown in upper case. In
this example, name, hull number and homeport are primitive objects while SYSTEMS
and CREW are aggregated objects. Name, hull number, homeport, SYSTEMS and
CREW are intensional properties. "LaJolla", "701", "San Diego” "propulsion”,

" "

"combat”, "navigation” and "Bill Smith" are extensional properties. These extensional
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Figure 11. Aggregation

properties represent the actual values for the intentional properties depicted in Figure 11
above.

(3) Association. The association abstraction relates similar objects as
a higher level set object [Ref. 16). In this abstraction, the attributes of the set object are
emphasized while details of the set members are ignored. Figure 12 gives an example of
the association abstraction: here the set object SHIP is composed of an association of
crew members, each of whom has a2 name, rank/rate and division.

(4) Version Generalization. Version genercilizarion is an abstraction

concept in which an object version is related to a higher level object, known as an object
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crew
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Figure 12. Association

tvpe. Object versions are defined as objects which share the same interface but have
different implementations [Ref. 17). An object type is an abstraction of the common
properties of its versions [Ref. 6). Figure 13 helps to explain these definitions.
Submarine and surface ship are object types which are related, as shown, to object
versions 637 class, 688 class, destroyer, aircraft carrier and cruiser. In this example,

there is no such thing as a minesweeper.

In this abstraction, versions can have two types of attributes; those

which are held in common with the set object and those which are unique for that
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Figure 13. Version Generalization

version. All submarines, including 637 class and 688 class have the attribute "nuclear”;
however, not all submarines have the attribute "under-ice capable”, as all 637 class do.
Attributes common to both the object type and the version type define the interface
characteristics of the object type. Attributes unique to one version distinguish one

version from another.

In version generalization, inheritance of attributes is possible, similar
to the generalization abstraction. The two abstractions differ, however, in that version
generalization specifies the relationship between an object type and its version types,
while in generalization, the abstraction is used to specify the relationship between its
types and subtypes [Ref. 6].

(5) Instantiation.  [Instantiation produces copies of an object, both

object versions and object types [Ref. 17]. Both object versions and object types can be
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instantiated. Instantiating a version provides a local working copy of a previous design,
with both the implementation and the interface copied. The working copy can be
specified to any level of detai! [Ref. 5]. Types can be instantiated to produce a working
copy where no previous design existed. In this case, no implemesntation is specified; only
the interface is copied. Figure 14 shows an example of instanviation. In this example,
the object CDR Reichel’s ship is an instance of type SHIP. CDR Reichel’s ship could
now be used to produce a working copy of type SHIP which could then be used as a
starting point for a new design. Since CDR Reichel’s ship is an instantiation of a (y;;e,
no implementation details have been provided and this particular instance will be
developed from scratch. In the case where CDR Reichel’s ship is instantiated from the

version San Diego -based ship, of type SHIP, implementation details have been provided

hull aumber

homeport

Slass type SHIP B R

[ee]

compiement
hull number version hult number inst
homeport San Diego homeport nstance

San Diego- based L COR Reichel's

class SSN 837 class
S SSN 637 class ship of type

submarine © Recche) SHIP
compiement complement

Figure 14. Instantiation
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as well as interface details. Here the design of CDR Reichel’s ship would begin where
the implementation details of San Diego -based ship left off. This implies that CDR

Reichel’s ship and San Disgo -based ship have similar implementations.

Instantiation provides for attribute inheritance. An instance of an
object version will inherit the attributes of both the object type and the object version.
For example, if we depicted an instance of object version San Diego -based ship and
called it CDR Wynne’s, this new instance would inherit all the attributes of both San
Diego -based ship and SHIP.

(6) Version Hierarchy. Version hierarchy is defined as the hierarchy

formed from the set of versions for a particular type or subtype [Ref. 18]. As we proceed
from one level to the next lower level in this hierarchy, additional implementation details
would be provided. The difference between ordinary generalization and version
generalization is that different versions of an object will have the same set of properties
with potentially differing values, whereas different types will have different sets of
properties [Ref. 6]. Figure 15 shows a representation of a submarine as a version
hierarchy. Here, NUCLEAR is a subtype of type SUBMARINE and "East Coast” and
"West Coast” are subtypes of NUCLEAR. Each subtype may have its own version
hierarchy; in the example, "New London-based” and "Charleston-based” are two
mutually exclusive versions of subtype "East Coast." Each block in the example is
capable of acting as the initial point for a new design.

(7) Instance Hierarchy. [Instance hierarchy is a hierarchy of different
instantiations of the same types/sutypes or versions [Ref. 18]. Figure 16 depicts an
instance hierarchy for the construction of an submarine. The submarine is being built
from scratch; that is, no previous drawings are to be used. The starting point for the
design is an instantiation of the subtype NUCLEAR. As the design progresses, the

designer may not be sure whether he wants a state of the art combat system or he wants
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Figure 16. Instance Hierarchy

to use a proven model_. The design process can continue on the path he prefers now and,
since the instance hierarchy is saved, if he later changes his mind, the hierarchy allows
him to go back to the original design and make the necessary modifications.
¢.  Current Semantic Models
The abstraction concepts we have described in the previous section are
combined and redefined in several ways to develop semantic data models. These models
use primitives such as objects, entities, and events along with methods for combining

these primitives and specifying attributes. Some models, known as extended data
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models. integrate programming language constructs into database concepts. They also
use advanced concepts such as abstract data types and strong typing [Ref. 6]. Some of
the more prominent semantic data models in use include the Entity-Relationship (ER)
Model. the Functional Model, SAM*, RM/T, SHM+, SDM/Event Model, and TAXIS.
Of these, the latter three are extended data models. We will examine the attributes of
these models in the following paragraphs.

(1) Entity-Relationship (E-R) Model. The Entity-Relationship {E-R)

Model is based on tables and graphs, an outgrowth of the process of designing
databases [Ref. 7]. This model bears some resemblence to the hierarchical and network
data models, in fact, the E-R model uses a network representation to depict entities as
nodes and relationships as edges connecting appropriate nodes. In this model, four levels
of views are designated which support both logical and physical database design. These
four levels define conceptual objects and their relationships, as well as ff‘_‘ﬂ“a for
organizing and storing these relationships. One strongpoint of this médcl is that it
supports many-to-many relationships. To date, its primary use has been in systems

analysis and design of databases [Ref. 7].

(2) Functional Model.  Functional database models seek to represent

entities and the relationships between them in terms of the mathematicz]l notion of a
function, as a mapping of one object onto the domain of another object. This model
treats data definition and data manipulation as integrated. There is no concept of a record
or tuple in this model. Instead, the model treats the data together with the operations on

the data, similar to an abstract data type.

Functional database models use concepts which are intuitively easy
to grasp. These concepts have evolved from mathematics and programming languages

and give functional models their power.
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) (3) SAM*.  SAM* is an improved version of an earlier data model,
known as SAM (Ref. 19]. SAM* is a powerful model, capable of supporting temporal,
positional and procedural relationships, as well as hierarchies of objects, muitiple
versions of objects, recursive definitions of objects and complex data types. The model

makes use of two types of concepts, aromic and non-atomic. Atomic concepts are those

which cannot be further broken down, are well-defined and understood, and do not need
to be defined in terms of other concepts. Conversely, non-atomic concepts are defined in

terms of either atomic concepts or other non-atomic concepts. [Ref. 6]

Groupings of atomic and non-atomic concepts are called associations
and are used to describe higher-level non-atomic concepts. SAM* supports membership,
aggregation and generalization associations, analogous to the classification, aggregation
and generalization abstraction concepts [Ref. 6].

(4) RM/T. RM/T, or extended relational model, is an improvement on
the relational data model, providing for null values, support for the aggregation and
generalization concepts, and a more diverse group of objects [Ref. 20). This model
represents types as relations with a special internal identifier to depict each instance of
the type. Attributes are similarly represented, with the special internal identifier
containing property values.

(5) Extended Semantic Hierarchy Model. The extended semantic

hierarchv model, or SHM+, provides a storage model which atiempts to integrate the
fundamental concepts of (semantic) data models with the concepts currently polular in
the design of programming languages [Ref. 10]. This model is based on an object
oriented, rather than a record oriented approach such as that used in the relational data
model. SHM+ uses the modelling concepts of classification, aggregation, generalization,
and association. It is referred to as an extension of the relational model because it

provides additional domains and data types, pennitting modelling of complex models.
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Additionally, SHM+ has the capability to define type hierarchies and provide for
inheritance. The hierarchies are composed of instances of subtypes of the parent type.
These hierarchies may, in tumn, be hierarchies themselves [Ref. 6].

(6) TAXIS. The TAXIS cata model is the culmination of an effort to
integrate tools for the design of informaticr cystems [Ref. 21]. The model is object-
oriented, employing objects to represent real-world (application) entity. and incorporates
the aggregation, classification and generalization abstraction concepts [Ref. 6]. Complex
entities can be modeled in TAXIS using a grouping known as a tranmsaction.
Transactions can be arranged hierarchically to model higher level procedures. TAXIS
has a compiling feature, as well, which allows the model to operate much like a
traditional relational database management system.

(7) Object-Oriented Models.  Object-oriented models are distinguished

from classical approaches by their ability to handle data of an arbitrary type. Whereas
classical approaches handle only data formatted as a record, the object-oriented systems
define types similarly to abstract data types in which data and the operations on that data
are packaged together. The object-oriented models are based on the classification
abstraction concept where objects are grouped into classes based on certain properties.
The classes can then be organized into hierarchies which determine inheritance

characteristics. [Ref. 6]
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III. THE MANUFACTURING DATA MODEL

A. INTRODUCTION

As discussed in Chapter 2, there are three approaches to Computer Integrated
Manufacturing (CIM): the high level approach which utilizes expert systems and data
translators to support the manufacturing functions, the centralized database approach
which uses a central or distributed database to serve the data needs of the manufacturing
functions, and the low level approach, which passes data between the manufacturing
functions through the use of a data model that fits the needs of each of the manufacturing
functions. We listed the advantages and disadvantages of each approach and indicated a
preference for the low level approach, in spite of the cost and need for long term
planning associated with this method. In this chapter, we will review a model which
exhibits many desirable characteristics in supporting CIM, and potentially Flexible

Manufacturing Systems (FMS).

C. Thomas Wu and Dana E. Madison of the Computer Science Department at the
Naval Postgraduate School have developed a data model in support of their work in
databases and Computer Integrated Manufacturing. Since we are describing their model
in this chapter, in preparation for applying it to FMS in Chapter S, this chapter is
paraphrased directly from ([Refs. 1,2,6]. We introduce no original material in this

chapter.

B. DATA MODEL DESCRIPTION
Wu and Madison’s data model, hereal._r called the Manufacturing Data Model,
takes a unique approach to modeling the data needs of CIM. Rather than describing the

data needs of each process within CIM, i.e., the data needs of Design, the data needs of
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Planning, etc., they look at the data needs of the overall manufacturing system. They
refer to their approach as data-oriented rather than process-oriented and cite its advantage
of integrating all the manufacturing functions within a system, rather than merely
automating the interfaces between functions {Ref. 6]. We will begin our review of the

Manufacturing Data Model by discussing the abstraction concepts it supports.

The Manufactu.ing Data Model inclndes the molecular aggregation, generalization,
version hierarchy, instantiation and instance hierarchy abstraction concepts [Ref. 1]. The
top level conceptual schema is used to depict several of the modeling concepts used in
the Manufacturing Data Model. Figure 17 shows a conceptual schema for a SHIP and
portrays allowable type/subtype aggregations, component relationships, and acceptable
combinations of primitive objects which can be manipulated to produce higher-level
objects. The conceptual schema defines the primitive objects under consideration.
Primitive objects are the low level entities which are manipulated by the data model to
support an application such as design, planning, or manufacturing. Primitives can, in
fact, be composites of other primitives and can be defined to various levels of

abstraction [Ref. 6].

In the Manufacturing Data Model, each type and subtype depicted in the conceptual
schema have an associated prototrype, and within each prototype exist slots. These slots
contain specific attribute values, or default values, and hold inheritance data. If an
instance is desired, an extension of the prototype is created with unique attribute values

inserted into the slots.

By assigning specific attribute values to the schema in Figure 17, we could create an
instance of a ship, i.e., a specific class or hull number, depending on how detailed the

schema was and how specific the attribute values are.
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Figure 17. Conceptual Schema of Type SHIP

Our generic SHIP is an aggregation of a hull form, a propulsion system, a
superstructure and a combat system. Propulsion system, superstructure and combat
system are also aggregations of objects, in some cases, sharing objects. Both
superstructure and combat system share an object called antenna.

Following the notation introduced by Madison [Ref. 6], bold rectangles in the
conceptual schema depict types with named subtypes. For example, propulsion system
can have subtypes such as nuclear, gas turbine or conventional steam. These subtypes
are capable of being instantiated to produce a unique ship.

The conceptual schema represents an important segment of the data modeling

process. While not part of the data model, it is a medium through which the model may
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capture data for an application. The model, in concert with the conceptual schema,

represent the range of altematives available in modeling a particular application. [Ref. 6]
1. Molecular Aggregation

Wu and Madison use the aggregation abstraction described in Chapter 2 to

support several manufacturing functions, including product design, where it can be used

to model assemblies and subassemblies, and planning, where it can be used to develop

process plans.

The Manufacturing Data Model uses aggregation to combine intensions and
extensions of objects of potentially disstmilar types into a higher level object, which will
turn out to be an intension or extension of a type [Ref. 6). Figure 18 shows an example
of an aggregation of intensions using the Manufacturing Data Model.

2.  Generalization

Wu and Madison use the generalization abstraction concept to indicate the
relationship between types and subtypes. They treat types as generalizations of named
subtypes, which are then treated as primitives which are capable of being made into
versions or instances. Figure 19 shows a type propulsion plant, created from subtypes
nuclear, gas turbine or conventional steam. In their model, the idea of subtype is
important because they allow different subtypes to have different sets of attributes.

[Ref. 6] In Figure 19, nuclear has an attribute "main coolant pump”, while neither gas

turbine nor conventional steam do.

An important aspect of generalization as applied in the Wu-Madison model is
the inheritance of attributes between types and subtypes. In Figure 19, propulsion plant
has been created with attributes A/C plant and distilling plant. Each subtype, nuclear,
gas turbine, and conventional steam have these same attributes, plus additional

attributes which may be uniquely defined for that subtype. The subtypes nuclear, gas
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Figure 19. Example of Generalization

turbine and conventional steam have their own attributes which define them as unique,
as well as any attributes which they inherit from their generalized type. [Ref. 6]

3. Version Hierarchy

Wu and Madison define a version of a type as a molecular object with two
objects, an interface and an implementation. The interface for a version is specified by
listing properties and attributes which describe the version. In their model, the
implementation for a version is specified by providing values for the attributes listed for
the interface. The Manufacturing Data Model has all of its interface attributes specified
but may have its implementation details in some stage of completion. By defining their
model in this manner, a version may be plugged, unplugged or parially

plugged [Ref. [7]. In Figure 20 we show an object of type SHIP with its interface
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defined, as represented by the upper block in the figure with attributes speed. length.
beam, range and Commanding Officer displayed. The implementation details for this
object are not specified, as depicted by the missing values for the attributes listed. Object
SSN-XX has the same interface details as its object type, SHIP, as well as some
implementation details, indicated by the values filled in for the speed, length and beam
attributes. In this example, the interface (function) of the SHIP is specified, while the
implementation details (e.g. what is the speed of the ship?) are not fully specified.
[Ref. 6]

Versions may have two types of attributes. One type of attribute is that which

is inherited from the object type. while the other rype are those which have unique values

speed
length
peam type
range SHIP
Commanding
Officer

A
speed 30 kts
length 317 version
beam 35 ft SSN-XX
range of
Commanding type
Officer SHIP

Figure 20. Example of a Version of a Type
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for each version. Those attributes inherited from the object type designate the interface
characteristics, or function, of the version. The attributes which are version specific are
those which differentiate one version of a particular type from another version of the

same type. [Ref. 6]

An important note is the difference between a version and an instance of a type
or subtype. A version is created at some midway point in the modeling of an application,
allowing further work to begin at that point. Implementation details are partially
specified. On the other hand, a type or subtype indicates a starting point in modeling an

application, with no implementation details provided. [Ref. 6]

The version hierarchy is formed when various values are assigned to the
attributes, resulting in a set of possible starting points for future work. This important
difference between the Manufacturing Data Model and other data models minimizes the
amount of redundant work necessary in all manufacturing functions. Rather than starting
each design, or process plan or schedule from scratch, the Manufacturing Data Model
concept of version hierarchy allows the designer or engineer to pick up work at some

midpoint previously defined.

The definition of version is what gives the Wu-Madison data model this unique
capability to pick up an earlier design or plan and continue developiaent from that point.
While the original definition of version [Ref. 17] allowed versions to be objects with the
same interface but different implementations, Wu and Madison have defined version in a
more general manner. In their definition, implementation can be specified to any desired
level of detail. For instance, implementation may be plugged, or completely specified;
partially plugged, or partially specified; or unplugged, the case where no implementation
details are specified. They feel that by generalizing the definition they gain considerable

flexibility, allowing them to better model the manufacturing environment. [Ref. 6]
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The Manufacturing Data Model version hierarchy is also unique in that it is
formed from the specialization of versions to form lower level versions. The existing
concept of version hierarchy [Ref. 17] is ez actly the opposite; the hierarchy forms from
the aggregation of versions to create higher level versions. These two concepts are

depicted in Figure 21.

The Manufacturing Data Model has one additional characteristic which gives it
the capacity to model a particular application environment. Their model consists of
versions which are all of the same type, related as depicted in the version hierarchy.
Versions are related to their type by version generalization where the the highest version
in the hierarchy is directly related to its type and the lower versions are related indirectly.
They feel this provides their model with additional flexibility in relating and representing
versions. [Ref. 6]

4. Instantiation

The Manufactiring Data Model makes use of the instantiation abstraction

concept to create versions and instances of objects. By instantiating types and versions,

it is possible to produce either an instance of an object or a new version.

As with the generalization abstraction concept, instantiation provides a similar
means of inheritance. Instantiation inheritance duplicates all of the attributes and
attribute values of the object being instantiated. New attributes may not be identified but
attribute values may be further specified. Figure 22 shows this inheritance. In this
example, the attributes of SSN 637 class, SSN 666 and SSN 667 are the same as the
attributes of type SUBMARINE. The differences between these instantiated objects,
either versions or instances, are differences in attribute values. SSN 637 class will have
only a few attribute values specified, whereas SSN 666 and SSN 667 will have all their

attributes specified, many with different values. Wu and Madison point out that
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Figure 21. Comparison of Version Hierarchies
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type

SUBMARINE

version V

‘ 637 class
version V1 instance |1 instance 12
stretch 637 class SSN 666 SSN 667

Figure 22. Example of Instantiation Inheritance

instances, such as SSN 666 and SSN 667, represent real world objects while versions,
such as stretch 637 class serve as templates which define real world objects to a
particular level of detail. In Figure 22, we could add an instance I3 below version VI to
represent an real world instantiation of this template. [Ref. 6]
5. Instance Hie.rarchx

Wu and Madison introduce a new abstraction concept in their Manufacturing
Data Model, the instance hierarchy, to complement the other concepts which they
employ. The instance hierarchy allows the user to archive previous instances of a
particular object. They stress that the instance hierarchy is a temporary entity within the
system, pending a decision by the user as to which particular instance (design, process

plan, schedule, etc.) he wishes to implement. In Figure 23 we have modified an example




from [Ref. 6] to depict the operation of the model as an engineer designs a submarine.
As shown, once the engineer chooses the alternative in the hierarchy to become the final
ship design, the hierarchy is collapsed, leaving only the selected design. In our example,
he has chosen a stretch 637 class submarine as the design he intends to work with. He
could also have chosen create a new design from the selected version. In Figure 23, we
have shown a situation where the engineer has decided to create a new version of the
stretch 637 class, the special DSRV-configured stretch 637 class. This design is added
to the version hierarchy to be used as a starting point for future work. In this case,

attribute values must be considered for specification when the version is created.

C. FORMAL MODEL DEFINITION

Wu and Madison use formal mathematical notation in [Ref. €] to define their data
model. We point this fact out to the reader in the event further background in the mode!
is desired. We will not review the mathematical definition here as it is not pertinent to

this thesis.
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IV. THE FLEXIBLE MANUFACTURING SYSTEM

A. INTRODUCTION
The Flexible Manufacturing System (FMS), as a manufacturing function within

Computer Integrated Manufacturing (CIM), is a set of computer controlled workstations
and the transportation components which link them, designed to efficiently produce
products at low or medium volumes [Ref. 6]. As a production method, the FMS provides
the computer integrated factory opportunities to:

* increase production,

* decrease costs,

* manufacture parts in random order, rather than based on material available,

* decrease inventory and work-in-progress levels,

* provide for inspection of all work,

* decrease the need for repetitive or dangerous work by humans,

* increase the need for intelligent work by humans,

* provide a reprogrammable, and in some cases, unmanned, manufacturing facility for
a wide range of items [Ref. 22].

With these positive points, one might assume that FMS technology is the solution to
the problems of CIM, in particular, the lack of integration between manufacturing
functions. In fact, this is not necessarily true, and in most cases, FMS is still pursuing the
goals of CIM. In this chapter, we will review FMS system architecture as it exists today,
pointing out a need for integration which closely parallels the needs of CIM presented in

Chapter 2.
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B. FMS HISTORY

FMS evolved from the Numerical Control (NC) machines of the 1950's and 60's.
These machines were the first programmable computer-controlled “robots" in the factory.
They operated on a simple scheme involving some type of communication system, often
a punchcard, providing input in the form of coded numbers to the machine. The numbers
represent the various functions which the machine is capable of performing. For
example, the sequence "S 4 6 2" might represent pick up tool "5", move left "4" inches,

cut to a depth of ".06" inches, then perform the sequence again.

The next step in the development of FMS was the emergence of the Direct
Numerical Control (DNC) machine in the mid 1960’s. The DNC machines coupled more

powerful computer control systems with tool handling and material handling systems.

The first direct ancestor of today’s FMS came in 1975 when a Numerical Control
machine was mated with an Automatic Tool Changer (ATC) system, a pallet pool, and an
Automatic Pallet Changing (APC) system [Ref. 22]. From this point on, the technology
evolved rapidly. Today, FMS is not only used in machining, but in welding, cleaning,
painting, inspection and packaging. The technology is even spreading beyond the
spectrum of manufacturing into non-traditional CIM environments. The Japanese
envision an automated textile factory, integrating garment design and manufacture
around an FMS [Ref. 22]. In this facility, design data would be used directly by cutting

and sewing machines to produce garments with a minimum of human intervention.

The importance of modem manufacturing concepts such as FMS becomes apparent
when one considers industry and population trends. Manufacturers will replace their
current manufacturing methods and machines by the year 2000, not piecemeal, but in
‘otal. Today's young people prefer working in service industries, rather than

manufacturing, reducing manufacturing’s employee base. These facts indicate that




productivity and efficiency will become even more important in the future of
manufacturing. FMS, with its impressive list of assets cited above, will be in the

forefront of this manufacturing revolution. [Ref. 22]

C. FMS SYSTEM ARCHITECTURE

Most FMS have a common architecture, built around a set of basic rules.

1. Ranky’s Rules
These architecture rules, identified in [Ref. 22] give top-level guidance in designing a

productive and efficient FMS. The rules make use of the concept of a "cell", the

smallest, single-function component of the FMS.

a. Cells
The FMS should incorporate automated and programmable machines, or
cells, capable of operating unmanned, utilizing ATCs and self-diagnostics while coupled
to a central computer which provides machine programming and data. These cells can
range in function from machining to inspection to packaging.
b. Transportation System
The cells should be connected by a system which provides material or
parts access in a random (Automated Guided Vehicle) rather than serial (conveyer belt)
manner.
c.  Storage Facility
The system should incorporate a parts, tools and pallet storage facility.
d. Computer Control
A distributed processing system should be implemented to provide
computer control of databases as well as links to external entities such as Computer
Aided Design (CAD), Computer Aided Manufacturing (CAM) and all related business

functions.
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e. Reliability and Flexibility
The system should be designed so that, in the event a particular cell breaks
down, sufficient redundancy and flexibility is present to allow for continued operation.

i 2. System Configuration

Using these basic rules, it is possible to produce a typical list of cells which
might comprise a FMS.
a. Control System
The control system includes facilities for operator interface and FMS
control and programming. This systern could include features such as editing, a CRT
display, diagnostics and system control software.
b. Functional Cell
The FMS contains one or more functional cells, components which
determine the purpose and capabilities of the system. Typical functional cells include
machining cells, inspection cells, part washing cells and painting cells.
¢. Transportation System
The functional cells would be linked by some type of automatic work
changing system, capable of interchanging palletized workpieces. The system would
also present the palletized workpieces to an AGV system, the link from the FMS to the
outside world.
d. Automatic Tool Changing Cell
i This cell interacts with the functional cells, replacing tools as necessary.
Typical tools which are changeable include chisels, blades, chucks and bits.
e. Storage Facility

The FMS requires a warehouse to store extra pallets, tools and material

stock. In general, this warehouse is an automated activity, interacting with AGVs.
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f.  An Example of FMS
Figure 24 depicts a generic FMS, comprised of a machining cell, part
washing cell, controller and transportation system. Not shown is the external storage
facility. We will use this simple FMS in Chapter 5 when we discuss applying the

Manufacturing Data Model.

e ——
FLEXIBLE MANUFACTURING SYSTEM

Machining Celi Part Washing Cell

[ con :lier ] [ controller B [ system controlier|
[ miling machine | { washing rooot | [ transport system |
[ 100l magazine | [ storage facility |

| part holder |

Figure 24. Simple Flexible Manufacturing System
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D. SCHEDULING A FMS

Scheduling a FMS is usually approached from a mathematical, or statistical, basis.
It should be emphasized here that very effective methods exist to schedule and program
the cells of a FMS, however, all curmrent methods treat the FMS as a separate
manufacturing function. Integration of the FMS with design, business functions and
otiter manufacturing functions is not considered. Since it is our intention to provide a
means to integrate these functions with FMS, we will provide just an overview of the

most popular current technique.

Several traditional methods are used to schedule conventional manufacturing shops
and several are applied with varying degrees of success to FMS. Of these, the "n" job,
"m" machine method extended for FMS is probably the most widely used [Ref. 22]. This
method is based on combinatorial mathematics and uses several rules and guidelines to
aid the scheduler in writing an efficient machine program. The method is presented in
significant detail in, [Ref. 22] therefore, its intricacies and nuances will not be presented
here. Instead, since it is the most common method of programming FMS, we will state

its shortfalls.

The "n" job, "m" machine scheduling method has three significant problems,

discussed below.

* The method is slow in a real world environment. Using combinatorial mathematics,
combining five jobs with five machines results in 25 million possible
combinations [Ref. 22]. This type of computation is capable of slowing a FMS,
normally supported by a mini-computer, to a crawl. Even calculations taking a few
minutes may produce a schedule which is already obsolete by the time it is
implemented.

* The method does not account for the dynamic nature of a FMS. Events such as
material shortages, tool breakages, urgent or modified jobs and computer faults
require significant changes in the rules which the method is based upon [Ref. 22].
Again, the method’s slow response time will result in the use of out-of-date schedules.

* Modifications are time consuming, expensive and difficult. New rules must be
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developed and implemented, then the scheduling method must be run. The result,
J again, is a schedule which may require further modification to make it current.

These shortcomings, along with the lack of integration common to all forms of CIM

i systems, are exactly the type of problems the Manufacturing Data Model, presented in

Chapter 3, was developed to correct. In the next chapter, we will apply the model to

FMS.
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V. APPLYING THE MANUFACTURING DATA MODEL

A. INTRODUCTION

In Chapter 3, we introduced the Manufacturing Data Model, a data-oriented
approach to true integration of the basic manufacturing functions. Chapter 4 reviewed a
manufacturing function within Computer Integrated Manufacturing known as Flexible
Manufacturing Systems (FMS). In this chapter, we intend to show the power of the
Manufacturing Data Model by applying it to a FMS. This thesis will conclude with

recommendations for further research in this area.

The Flexible Manufacturing System, as we presented in Chapter 4, is a collection of
computer-controlled cells, or semi-independent workstations, designed to manufacture an
assortment of products at low or medium volumes [Ref. 6]. One characteristic of a FMS
is that it is used to produce one product at a time, that is, a particular FMS will only be
used to produce a pencil sharpener or only be used to produce a can opener. It will not
be used to produce both pencil sharpeners and can openers simultaneously. Thus the
scheduling problem in the FMS environment reduces to scheduling multiple FMS; for
instance, using FMS 1 to produce pencil sharpeners and FMS 2 to produce can openers.
This work has been done in [Ref. 2] and will not be discussed in this thesis. Instead, we
will focus on using the Manufacturing Data Model to perform the equivalent of process
planning on an FMS. We will begin by looking at how the Manufacturing Data Model
can be used to develop machine programs for the FMS. Before delving into the FMS,
however, we will look at how the Manufacturing Data Model has been applied in

previous work. We will begin by looking at the traditional approach to process planning.
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B. THE CONVENTIONAL APPROACH TO PROCESS PLANNING

Process planning is the development of a specification defining the operations which
must be performed on a part, or several parts, in order to produce a particular finished
item. Traditionally, process planning has been performed manually by an industrial
engineer, working with design drawings and his knowledge of the plant’'s equipment.
Condiderable effort is made to maximize the efficient use of the plant’s equipment,
minimizing points where parts back-up, awaiting an available machine ("bottlenecks"),
as well as points where machines sit idle. Obviously, this manual approach is very
labor-intensive, inexact, and ripe for automation. In fact, automated process planning
schemes have been developed but they are not integrated into the complete
manufacturing and design functions. They may use specially produced data or translated
data from the design process and their output of these automated schemes, rather than
being in a form which could be applied directly on the manufacturing floor, must instead
be translated again prior to use. While this approach removes much of the human error
in process planning and saves considerable time, it should be viewed as a step on the road
to true integration. In truly integrated process planning, design data in a specified format
is passed directly to a process planning application, processed, and passed on to other
manufacturing functions (scheduling, shop floor layout, business applications, etc.) for
direct application without translation. The essence of this truly integrated approach is the
absence of translators and a minimum of human intervention beyond the boundaries of
the particular manufacturing functions. This is the goal which the Manufacturing Data

Model attempts to achieve.

C. THE MANUFACTURING DATA MODEL APPROACH
Wu and Madison, in their work in process planning [Ref. 6], approach the subject

from a data-oriented, rather a than process-oriented, approach. They view process
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planning as divided into four phases. Their first phase involves a gross decision regarding
the level of machining or assembly required to produce a given piece. In an example,
they consider three possibilities: 1) a piece could be machined from a casting, 2) a piece
could be machined from raw stock or 3) a piece could be assembled from smaller parts or
assemblies. The first and second possibilities involve parts manufacturing, the stepwise
changes to a part as it progresses from an unmachined state to a finished, machined
condition [Ref. 6). The third possibility, assembly, is the combination of two or more

parts or sub-assemblies to produce a finished product.

In the Manufacturing Data Model data oriented approach, the second phase in
process planning involves selecting and sequencing the appropriate tools and procedures
as required by the decision made in the first phase. This phase determines the sequence
of steps the part will follow within the shop, from the point where it is delivered to the
machine, through the various machining and assembly processes, to the point where it

leaves.

The third phase in the process planning example presented in [Ref. 6] selects the
appropriate machine tool for each operation chosen in the second phase. For example, if
a part is to be machined and then bored, this phase would involve selecting the proper
machining equipment (milling machine, grinding machine, etc.) and boring equipment
(drill press, clamping pallet, etc.). This phase does not consider the actual availability of
machines on the floor, but instead describes process details such as cut and feed rates, cut

sequences, cleaning techniques and computation of individual and overall process times.

The fourth phase selects individual tool types for the equipment selected in phase
three. If a drill press was selected in phase three, the industrial engineer would select a

3/4 inch bit in this phase. Availability of tools is not a consideration.
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Once these four phases are addressed. the industrial engineer portrays altemative
process plans for a paricular product or set of related products as an acyclic directed
graph, depicting all possible choices from each manufacturing activity. Figure 25 shows

an example of one of two alternative process plans for the manufacture of a can opener.

can
cpener

mold
handle

cast
handie

forge
turning
device

ove 10 grind move to
move
) blade ) .
machine trimming
shob machine
polisn

dritl turning
blade device

assambie
handle

assembie
handle

insert biade
and inspect

Figure 25. Graph of Altemative Process Plans
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Using this example, we will step through the activities Wu and Madison use to

semantically describe the process planning evolution.

The industrial engineer can begin development of a process plan either from scratch
or by modifying a previously determined process plan. A conceptual schema becomes
the basis for an original process plan. This is th= same conceptual schema which the
Manufacturing Data Model utilizes in product design. The initial step is to create an
instance of the type represented by the conceptual schema. An example of such a
schema is shown in Figure 26. Once this instance of type Can Opener is complete, the
adevelopment of the process plan shifts to a bottom-up approach. The engineer chooses a

component from the lowest level of the conceptual schema and defines the process plans

can
opener
handle blade
assembly assembly

[ » l [ 1

upper lower turning
et |
handle handle v blade device
assembly

Figure 26. Conceptual Schema for Product Type Can Opener
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foi these primitive components, in our case, the blade, the turning device and the handle.
After the lowest level process plans are developed, the plans for the next higher level, the
blade and handle assemblies, are defined. The levels are related by the aggregation
abstraction concept which implies that a process plan at one level need only consider the
process plans at the next lower level, in other words, an assembly procedure. The

process plan definition continues upward. level by level, until the top level is included.

The use of aggregation considerably simplifies the process planning procedure in
that it parallels the human thought process in product design and manufacture. Humans

tend to consider an item as an aggregation of smaller subassemblies.

Definition of primitive level process plans requires the engineer to make a
determination as to which information can be specified directly and which must be
described later, in the form of parameters. The Manufacturing Data Model can hold
these parameter values undefined until the generic process plan is used for production.
They cite as an example in their work a machined cut. Machine tool and niachine rype
can be specified during development of the process plan. Dimensions of the cut may
remain undefined, or parameterized, until the dimensions of the workpiece are specified

and the generic process plan is made workpiece-specific.

If a previously defined process plan is to be modified to produce a new plan. the
industrial engineer would begin with the version hierarchy for the type of product
concemned. Figure 27 shows a simple version hierarchy for product type Can Opener.
The engineer would first choose the particular version closest to the process plan he is
considering. He would then create an instance of the selected version and modify it,
level by level as described above, using the conceptual schema as a guide. The
completed process plan would then be added to the version hierarchy, as shown in Figure

28. The Wu-Madison approach to process planning reduces the complexity of this
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Figure 27. Version Hierarchy for Product Type Can Opener
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Figure 28. Updated Version Hierarchy for Product Type Can Opener

manufacturing function through the use of abstraction concepts and reuse of generic

process plans. The model is directly applicable to Flexible Manufacturing Systems.

D. FLEXIBLE MANUFACTURING SYSTEMS

Process planning, scheduling and Flexible Manufacturing Systems are similar in
several aspects. In all three cases, the design engineer must integrate the competing
demands of two or more process plans with the limited manufacturing resources
available. Modeling techniques applicable to one should, with minimal modification,

apply to the others. In this section, we will develop a simple FMS, to be used later when

we apply the Manufacturing Data Model.
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An FMS is composed of several automated. programmable cells, each comprised of
related machines. For example, a machining cell ‘nay include a controller. a milling
machine, a tool magazine and a part holder. A part washing cell might include a
controiler and a washing robot. These cells are comnected by a uanspostation sysiem,
usually some form of robot-operated pallet. A parts and matenal storage facility, or

warehouse, supports the overall system. Figure 29 shows a basic FMS.

Chapter 4 discussed the basis for current scheduling techniques for FMS. These
systems are scheduled and programmed using combinatorial mathematical procedures.
In general, these techniques are effective in stable environments. However, if change is
introduced into the FMS, either in the fonm of a new product to be manufactured, a
disabled cell, or a change in product design, the FMS responds slowly due to the nature
of the programming/scheduling process. Some system to use design data directly in the

programming/scheduling environment, coupled with a system which could archive

S
FLEXIBLE MANUFACTURING SYSTEM

Machining Cell Part Washing Cell
[ controller | [ controtier B [ system controlier]

| milling machine | [ washing ropot | [ transport system |

[ tool magazine | [ storage facility |

| part holder B

Figure 29. Simple Flexible Manufacturing System
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previously used schedules for other products, would significantly improve the efficiency

of a FMS. The Manufacturing Data Model offers these capabilities.

E. APPLYING THE MANUFACTURING DATA MODEL TO FMS

The strength of the Manufacturing Data Model is derived from the use of several
abstraction concepts to simplify and provide flexibility to the modeling of several major
manufucturing functions. In this section, we will address the applicability of the model

in support of FMS.

The Manufacturing Data Model makes wuse of the aggregaton,
generalization/specialization, version hierarchy, instantiation and instance hierarchy
abstraction concepts to describe the process planning, scheduling and shop floor layout

problems. We will use these abstractions to address the FMS programming situation.

Aggregation is the abstraction of a set of objects and their relationships into a higher
level object [Ref. 14]. This concept permits the designer to work at the appropriate level

of detail, hiding unnecessary details of implementation.

The simple FMS, depicted in Figure 29, consists of an aggregation of a machining
cell, a part washing cell, a controller, a storage facility and a transportation station. The
machining cell and the part washing cell are aggregations, that is, they are composed of
lower level, or molecular, objects. The controller, storage facility and transportation
system are molecular objects. In the Manufacturing Data Model, the interface of an
aggregation is determined by the interfaces of its molecular components [Ref. 6]. The
function, or implementation, of an aggregation is likewise determined by the functioning
of its molecular components. In other words, the function of the part washing cell is

determined by the function of the controller and the robot.

The generalization/specialization abstraction concept [Ref. 14] is used in the

Manufacturing Data Model to relate types and subtypes. Types are generalizations of
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subtypes, as described in the can opener example in section C above. Subtypes are an
important aspect of the Manufacturing Data Model as dit{erent subtypes are allowed to
have different sets of attributes. Types and subtypes can function as primitive entities

from which versions and instances can be defined.

In Figure 30, we show a generalization of a FMS. In this example, FMS is a
generalization of COMAO FMS (a particular make of FMS) and other FMS w/i same
factory (representing other FMS within the same factory). Likewise, COMAO FMS is
a generalization of the specific cells which comprise it. Conversely, lathe tool is a

specialization of tool magazine.

Wu and Madison define a version of a type as a molecular object with interface
details specified and implementation details unspecified. By defining a version in this
manner, the version can be plugged, unplugged, or partially plugged [Ref. 17]. Figure 31
depicts an object of type machining cell with an object version V1 tapping machine of
type machining cell. The object of type machining cell has its interface defined, which
is represented by the shaded interface box. Implementation, or function, details,
however, are not specified as depicted by the unshaded implementation box. Object V1
has identical interface details as its object type machining cell and has some
implementation, or function, details specified, represented by the partially shaded

implementation box.

As we described in Chapter 2, versions are allowed to have two types of attributes.
One type is inherited from the object type and passes on the interface characteristics of
the object type. Using our example, the rapping machine inherits interface
characteristics from the object of type machining cell. The other type of attributes are
those specific to that particular version. These are the attributes which differentiate one

version of a specified type from another of the same type.
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Figure 31. Example of Versions in FMS

Wu and Madison use the idea of parameterized versions to specify implementation
details of a particular object. This concept is valuable in dcfining implementation details
for an instance of a type, an object in which implementation details are not specified. In
this case, an instance of an object type is produced rather than an instance of one of its
versions. This instance of an object type is called a parameterized version. In other
words, defining an instance of a specified object type produces a socket which will accept
any version of that specified type. Different versions can be plugged into the sockets,

creating a unique FMS implementation.

The next abstraction concept used in the Manufacturing Data Model is the creation
of an object by instantiation. Object types and object versions are capable of being

instantiated {Ref. 17]. Instantiating a type produces a copy of a process plan, or
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schedule. or shop floor layout, or in the case of a FMS, a FMS program. In Figure 32, a

simple FMS program is depicted as an object type. Also shown is a version of the object

type. instantiated to produce a particular product. The object type itself can also be

instantiated, as shown.

FMS program

cut object type
rotate
FMS program
wash
inspect
FMS program FMS program
version
cut yes cut 1.5 mm
produce machmned piece
rotate yes rotate 97 dgegrees
of objec! type
wasn yes wash all sides
FMS program
nsgcest | cul gepth inspec! | cyt deotn

FMS program .
- instance
u
produce cylinder head
rotate .
of version
wasn
produce machined p1ece
inspec!

Figure 32. Instantiation

inslance

produce cylinder head
aof ebject type

FMS program
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The instantiated object type can be considered a working copy of the object type and
will function as the starting point for a new FMS program. Since this working copy is
instantiated from its parent type, this implies that implementation (function) details are
not specified and must be developed from scratch. In our example, the program on the
right in the figure is instantiated from its parent type. The function of this program is
awaiting definition.

If a FMS program is instantiated from a version of the object type, such as the
program on the left, any implementation details specified in the version would be
inherited by the new program. In other words, if the function of the version is produce
cvlinder head, the function of the instantiated version would also be produce cylinder

head.

The final abstraction concept which the Manufacturing Data Model makes use of is
the version hierarchy. The basic definition of a version hierarchy is a hierarchy of
versions, with increasing implementation detail specified as you proceed to lower
levels [Ref. 6]. As described in Chapter 2, the version hierarchy differs from the type
generalization hierarchy is that different versions of an object have the same set of
attributes, but not necessarily the same values, while different types may not necessarily
have the same set of attributes. In Figure 33, we have depicted a version hierarchy of the
FMS program manufacture crankshaft. Manufacture crankshaft is a type, while
manufacture 4-cylinder crankshaft and manufacture 8-cvlinder crankshaft are subtypes
of Manufacture crankshaft. High horsepower and economy are subtypes of
manufacture 8-cylinder crankshaft. Two mutually exclusive versions of manufacture 8-

cvlinder crankshaft are also depicted, standard size and metric size.

68




FMS ram
Menufecture of ‘Y::)g
[ 3 tt
Cranksha Manufacture Crenkshatt
h C.c
P Rotste
/ .
L= \
subtypes of
Manufactyre Mant. acture ‘ypeypo
4. -cyl Crankshaft
eyl Crankshatt 8-cy ranksha Manufecture Crankshaft

N Cut

[ — P Cut
E Rotate p———q E Rotate |
3 Wash  j—————— wasn
M nsoec——— o IHH).C:
Manutacture Manutacture
High Horsepower Economy
2
o — b Cut
P Sotate p———vt R Rotate
D Wasn  p——— B wasn
o tnspect " 3PC! \
Manufacture Manufacture Manutacture Manufacture
Standard Size Metric Size Stancard Size Metric Size
b cw h Cut h Cut E Cut
RQotate Aotate RAotate RAotate
wasr was» ' wash Wwasn ]
InsoeC "‘”"Y'_"‘ W Insoac e msooct——-‘

Figure 33. Version Hierarchy of FMS Program Manufacture Crankshaft

F. AFMSEXAMPLE

In the section above, we made repeated reference .o the Manufacturing Data Model.
In this section, we will develop an example by following the steps an industrial engineer

would follow in programming an FMS to produce a crankshaft using the Manufacturing

Data Model. We will assume the engineer must develop the program from scratch.
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Initially. the industrial engineer must develop or acquire a top level product drawing
to be used as a conceptual schema for the particular piece to be produced. It should be
stressed that the engineer needs to be familiar with the product before the programming
procedure can begin. In addition, he must be intimately familiar with the capabilities of
the FMS in his factory. He can begin the programuning process by considering the
conceptual schema for the FMS programs he will be using. Figure 34 represents the

conceptual schema we will use in this example.

manufscture on FMS

manulacture
engine parts

manuiacture
pump parts

manuiacture

manutacture

manutfacture

manutacture

manulacture

eng' e block cvlinder head crankshaft housing imopelilar
inspect inspect
casting bearing
[arina casung| poiish_casung| [form bearing | poiish bearing]

wash cashngl

Figure 34. Conceptual Schema of FMS Programs
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As the next step. the engineer creates an instance of the FMS program type to be
used. Here, we will produce an instance of program type Manufacture on FMS namely,

manufacrure crankshagt. Figure 35S depicts this instance.

The third step requires the engineer to identify the component at the lowest level of
the schema. In our example, this component would be the subprogram entitled wash
casting. Beginning with this subprogram, the engineer develops machine programs for
the FMS for each primitive level component. For our simple exammple, he must develop

programs for the FMS for the subprograms grind casting, wash casting. polish casting.

program type

manufacture on FMS
manufacture on FMS

program sublype

manufaciure crankshaft
manufacture cranksnaft

inspect castng nspect bearing
gnnd casting polish casting form bearing polish casting

wash casting

Figure 35. Instance of Program Type Manufacture on FMS
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form bearing and polish bearings. Simplified examples of these subprograms are shown
in Figure 6. The engineer must ascertain which information can be specified and which
must be parameterized, to be specified later. In our example, all of the subprograms
except grind casting are fully specified. Let us assume that the Design Department is
considering implementation of a revised design. In this case, the grind casting program
is left parameterized, awaiting further information from Design. This circumstance is

depicted in Figure 37. Following the development of these programs, the engineer

Manufacture Crankshaft

inspect Casting

nspect Bearing

Pouian Casting

wasn Csasting

Gring Casting

Form Bearing

Polisn Bearing

*  Aczczep! palle!

1. Ooen door.

Accep! paliet

1 Accept! palie!

1. ACceo! Datle!

2 Po'sn face 2. Accept palie! 2. Gnnd face 2. Bena metat 2. Ponish face
7 Qa=pve Ha~ 3. Spray pan 3. Rotate pan 3. Rotate pan 3 Remove pale!
4, Rotate part 4. Gnna side 4. Bena metat
5 Spray pan S Rotate pan 5. Cut groove
6. Ory part 6. Gnng dack 6§ Remove Dalie!
7. Coen door 7 Remove paliet

Figure 36. Simplified Examples of Subprograms
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Figure 37. Primitive Level Programs

considers the next level up in the schema.

The FMS program for the next higher level in our example entails inspection of the
components. Following inspection, assembly is performed. The bearing is fitted to the
crankshaft. making a crankshaft assembly. Both inspection and assembly require FMS

programs. At this point, the process is complete.

One unique aspect of a FMS is the inter-cell transportation system, the integral

system which moves parts and assemblies from one cell to another within a FMS. The
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transportation cell is not addressed in this example but rather it is treated as a separate
entity from the other cells in the FMS. This is analagous to the process planning
situation, where the movement of parts and assemblies, represented by the lines on the
graphical representation of the conceptual schema, is not considered in the development

of the process plan.

The Manufacturing Data Model gives us the ability to use the same data model in all
of the manufacturing functions. With minimal modifications, our simple example above
could be modified to model the data needs of design, planning or business applications.
This capability is the primary advantage of the Model and stands it apart from the rest of
the high level data models. In addition, the Manufacturing Data Model has the ability to
archive previously used designs and programs, providing a starting point for future
efforts and minimizing any duplication of effort. These advantages give the
Manufacturing Data Model the potential for increasing the efficiency and productivity of

the computer integrated factory.

G. CONCLUSIONS

In the modem marketplace, where the bottom line is the primary concem and where
the bottom line is more and more affected by efficiency and productivity, Computer
Integrated Manufacturing has become a viable route to business success. Computer
[ntegrated Manufacturing is, however. a misnomer in that the integrated refers to
integrating computers into rnanufacturing, rather than using the capabilities of computers
to integrate the various functions of manufacturing. In this thesis., we have referenced
previous works which identify three approaches to correcting this situation: the high level
approach, the centralized database approach, and the low level approach. In Chapter 2.
we identified shortcomings in the high level and centralized database approaches such as

high cost. the liunitations of current technology and limited gains in productivity and
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efficiency. We identified a specitic low level approach, implementing the Manufacturing
Data Model, which shows great promise in capturing the semantics of the manufacturing

environment,

The Manufacturing Data Model has been applied. in previous work, to the shop
floor layout, process planning and scheduling functions. In these cases, the model
demonstrated a reduction in complexity and increased flexibility through the use of
several abstraction concepts. Their unique approach, which is data- ornented rather than

process-oriented, provides a solution to a complex manufacturing problem.

Flexible Manufacturing Systems, a manufacturing function within Computer
Integrated Manufacturing, is a technology which has attempted to integrate
manufacturing functions. While the goal of these systems is to integrate their
manufacturing cells, tn most cases, they have fallen short and instead function as a group

of physically proximate numerically controlled machines.

In this chapter. we applied the Manufacturing Data Model to FMS. The mode;
proved capable of modeling the semantics in a simple example involving the
manufacture of a can opener in a FMS. What appeared to be a complex task, integrating
a complicated machine such as a FMS with a simple product such as a can opener,

nonetheless broke down to a very and understandable task using the model.

The Manufacturing Data Model shows the capacity to integrate all of the
manufacturing functions using one data model with no translation. This capacity will
lead to the ability to integrate the Business Office with the Design Department. Design
with the Manufacturing Shop, a FMS with Design. and so forth. This capacity represents

a first step on the path to true, and total, Computer Integrated Manufacturing.

Several areas exist for future research in this topic. One area is the implementation

of the Manufacturing Data Model, actually coding a representation of the model and
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demonstrating, rather than describing, its effectiveness. Another area would be an
investigation of the applicability of the model to the design and business office functions.
A third area for future research would be the development of a user-interface on a

graphics-based system, such as the IRIS workstation, to allow a generic user to interact

with the model.
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